

Prepared By

Prof. Rashad Badran

- Conservation of Mechanical Energy (Absence of Nonconservative Forces)
- Conservation of Energy (Presence of Nonconservative Forces and Other Forces)

Conservative of Energy: Involving Conservative Forces Only

A force is conservative if the work it does on an object moving between two points is independent of the path the object takes between the points

 The work depends only upon the initial and final positions of the object (it does not depend on the movement path)

✓The work done by this force in a closed path is zero

 Any conservative force can have a potential energy function associated with it

$$\checkmark \text{Work done by gravity} \qquad W_g = PE_i - PE_f = mgy_i - mgy_f \qquad or \ W_g = U_{gi} - U_{gf} = mgy_i - mgy_f$$
$$\land \text{Work done by spring force} \qquad W_s = PE_{si} - PE_{sf} = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2 \qquad or \ W_s = U_{si} - U_{sf} = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2$$

$$\therefore W_{conservative force} = -(U_f - U_i) = -\Delta U$$

Conservative of Energy: Involving Conservative Forces Only

$$W_{net} = K_f - K_i = \Delta K$$

$$W_{conservative force} = -(U_f - U_i) = -\Delta U$$

$$W_{net} = W_{conservative force} = W_c$$

The conservation of mechanical energy is $\Delta U + \Delta K = 0$ Or it can be rewritten as: $U_i + K_i = U_f + K_f$

The mechanical energy E is the sum of potential and kinetic energies,

$$\therefore E_i = E_f$$

Non-Conservative Forces

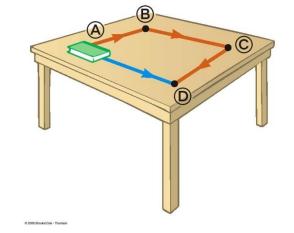
A force is nonconservative if the work it does on an object depends on the path taken by the object between its final and starting points.

 $_{\odot}$ The work depends upon the movement path

 For a non-conservative force, potential energy can NOT be defined

Work done by a nonconservative force

 $W_{nc} = \sum \vec{F} \cdot \vec{d} = -f_k d + \sum W_{otherforces}$



It is generally dissipative. The loss
 of energy takes the form of heat or sound

• The work-energy theorem can be written as:

$$W_{net} = K_f - K_i = \Delta K - - - -(1)$$

- W_{nc} represents the work done by nonconservative forces
- W_c represents the work done by conservative forces
- Any work done by conservative forces can be accounted for by changes in potential energy
 - Gravity work $W_g = PE_{gi} PE_{gf} = mgy_i mgy_f = U_i U_f$
 - Spring force work $W_{s} = PE_{si} PE_{sf} = \frac{1}{2}kx_{i}^{2} \frac{1}{2}kx_{f}^{2} = U_{i} U_{f}$

::
$$W_c = -(U_f - U_i) = -\Delta U - - - - (3)$$

Thus Conservation of energy law can be obtained from equations (1), (2) and (3) as:

$$W_{nc} = \Delta U + \Delta K$$

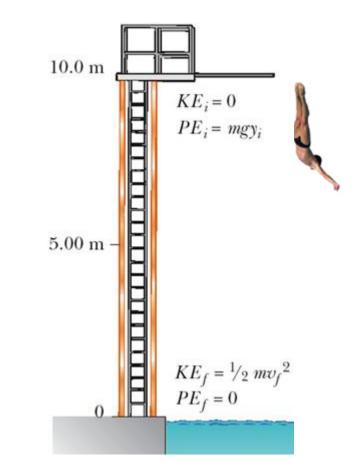
But $W_{nc} = \sum \vec{F} \cdot \vec{d} = -f_k d + \sum W_{otherforces}$

Thus
$$-f_k d + \sum W_{otherforces} = \Delta U + \Delta K$$

If there are two conservative forces (like force of gravity and spring force) and one moving object in addition to different nonconservative forces in the problem one gets

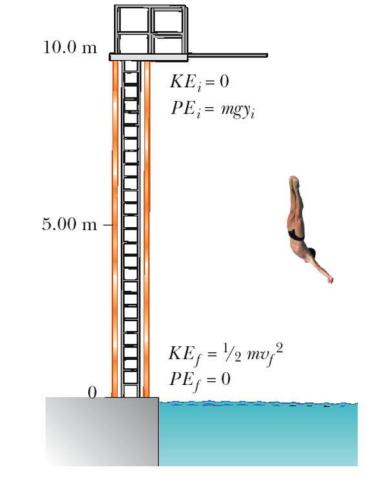
$$-fd + \sum W_{otherforces} = (mgy_f - mgy_i) + (\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2) + (\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2)$$

- A diver of mass m drops from a board 10.0 m above the water's surface. Neglect air resistance.
- (a) Find is speed 5.0 m above the water surface
- (b) Find his speed as he hits the water



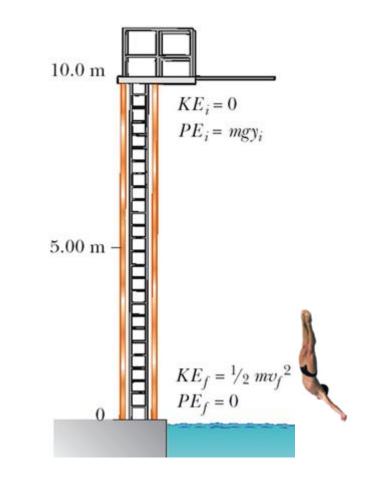
Example

- A diver of mass m drops from a board 10.0 m above the water's surface. Neglect air resistance.
- (a) Find is speed 5.0 m above the water surface
- (b) Find his speed as he hits the water



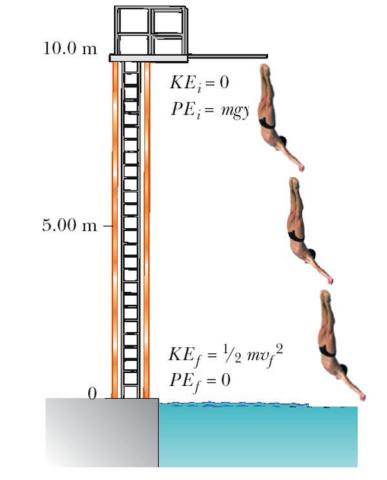
© 2006 Brooks/Cole - Thomson

- A diver of mass m drops from a board 10.0 m above the water's surface. Neglect air resistance.
- (a) Find is speed 5.0 m above the water surface
- (b) Find his speed as he hits the water



Example

- A diver of mass m drops from a board 10.0 m above the water's surface. Neglect air resistance.
- (a) Find is speed 5.0 m above the water surface
- (b) Find his speed as he hits the water



© 2006 Brooks/Cole - Thomson

Solution

• (a) Find his speed 5.0 m above the water surface (at point B)

$$\Delta U + \Delta K = 0$$

$$(mgy_f - mgy_i) + (\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2) = 0$$

$$gy_{fB} - gy_{iA} + (\frac{1}{2}v_{fB}^2 - 0) = 0$$

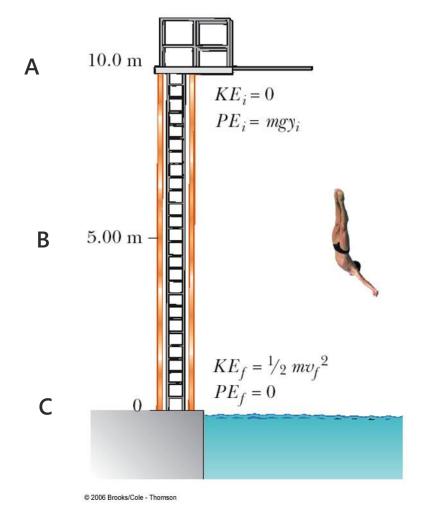
$$or - g(\Delta y)_{A \to B} + (\frac{1}{2}v_{fB}^2 - 0) = 0$$

$$(\Delta y)_{A \to B} = h_{AB}$$

 $\Rightarrow gh_{AB} = \frac{1}{2}v_{fB}^2$

$$v_{fB} = \sqrt{2gh_{AB}}$$

= $\sqrt{2(9.8m/s^2)(5m)} = 9.9m/s$



• (b) Find his speed 10.0 m above the water surface (at point C)

$$\Delta U + \Delta K = 0$$

$$(mgy_f - mgy_i) + (\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2) = 0$$

$$-mg(\Delta y)_{A \to C} + (\frac{1}{2}mv_{fC}^2 - 0) = 0$$

$$(\Delta y)_{A \to C} = h_{AC}$$

Solution

$$mgh_{AC} = \frac{1}{2}mv_{fC}^2$$

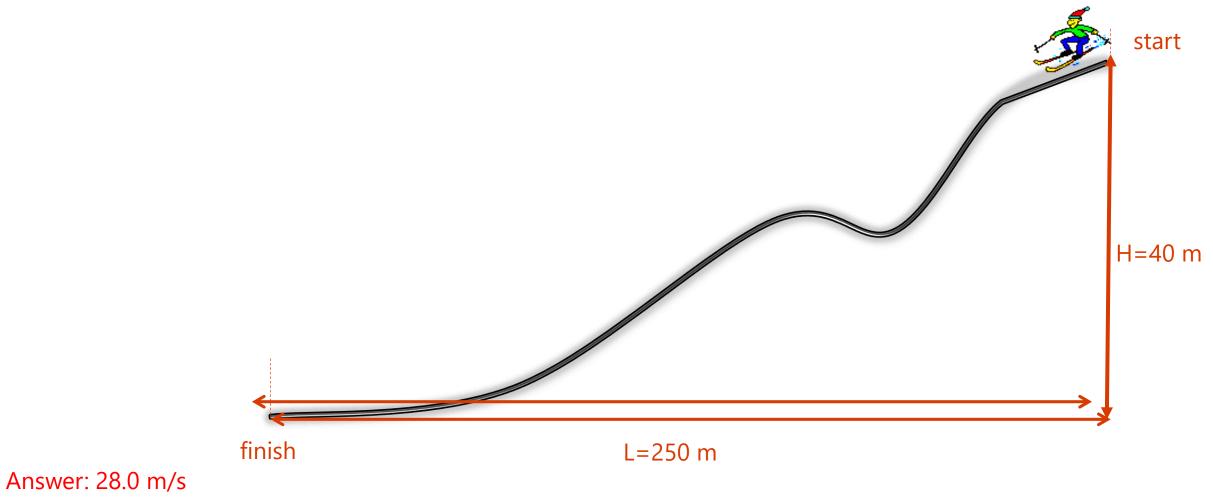
A 10.0 m

$$KE_i = 0$$

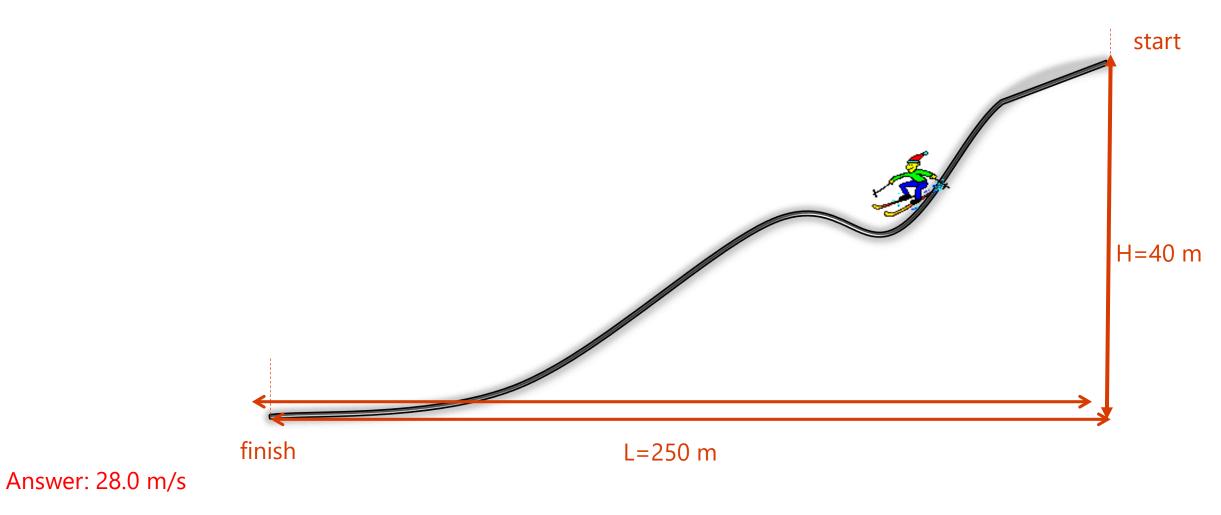
 $PE_i = mgy_i$
B 5.00 m
 $KE_f = \frac{1}{2} mv_f^2$
 $PE_f = 0$

$$v_{fC} = \sqrt{2gh_{AC}} = 14m/s$$

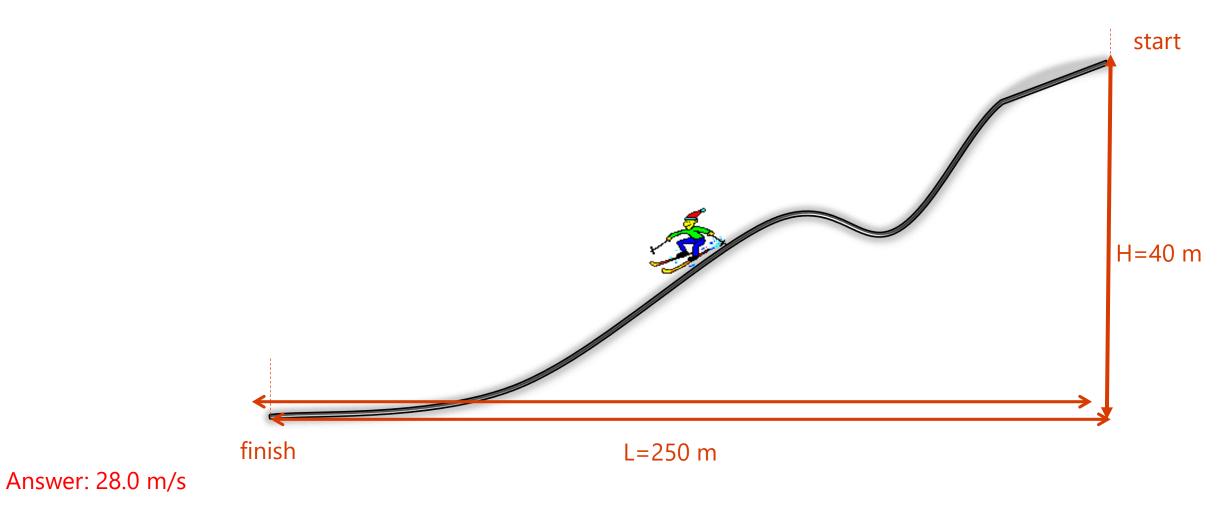
Conservation of Energy

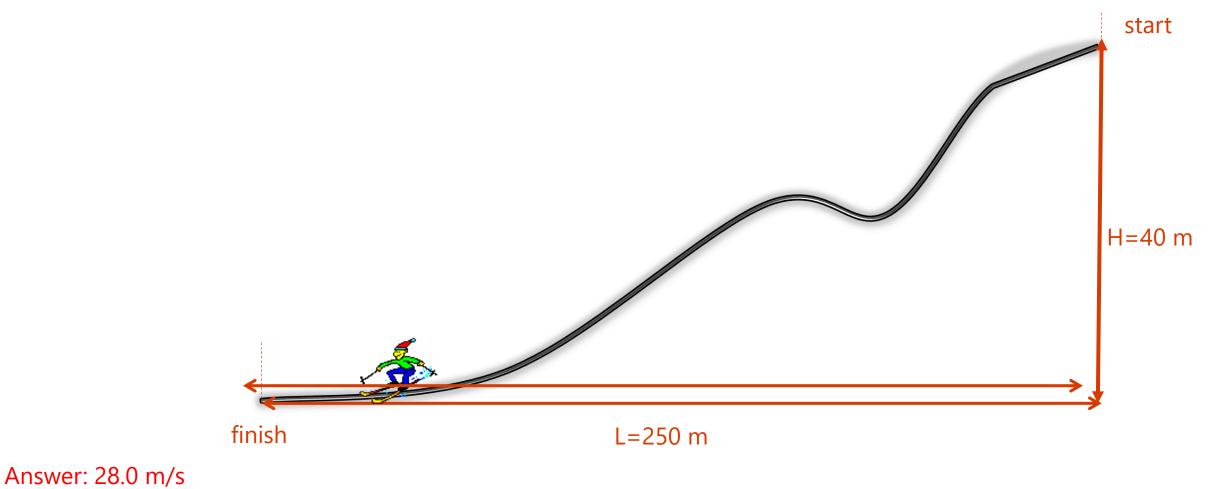


Conservation of Energy

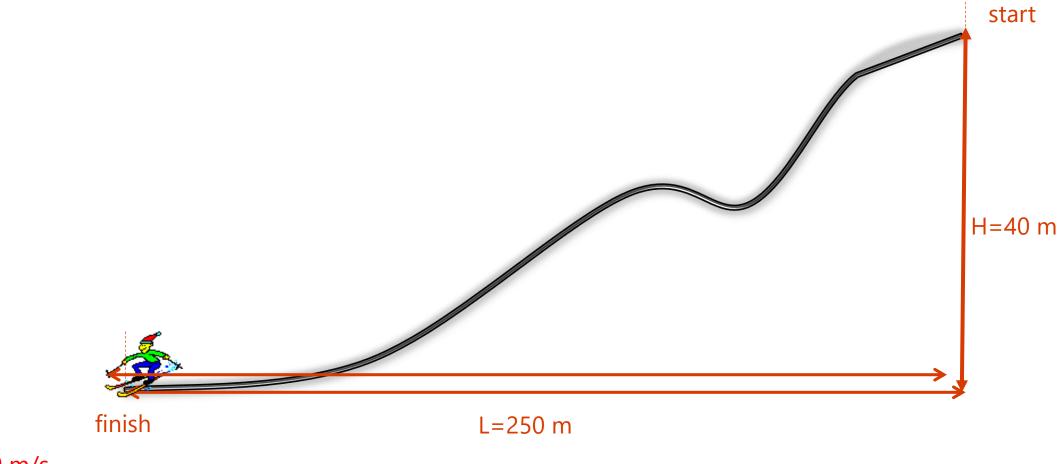


Conservation of Energy





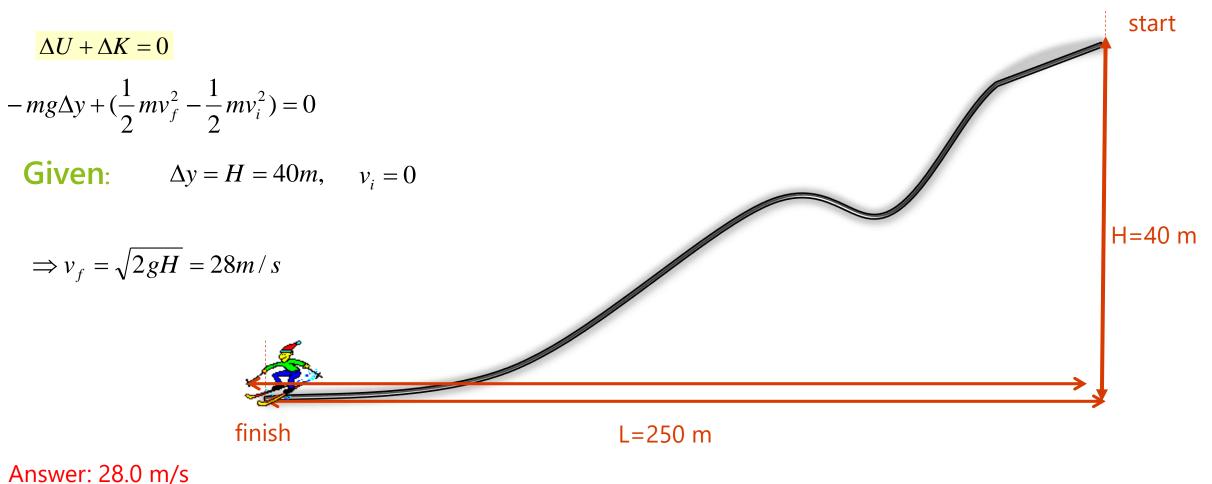
A skier slides down the frictionless slope as shown. What is the skier's speed at the bottom?



Answer: 28.0 m/s

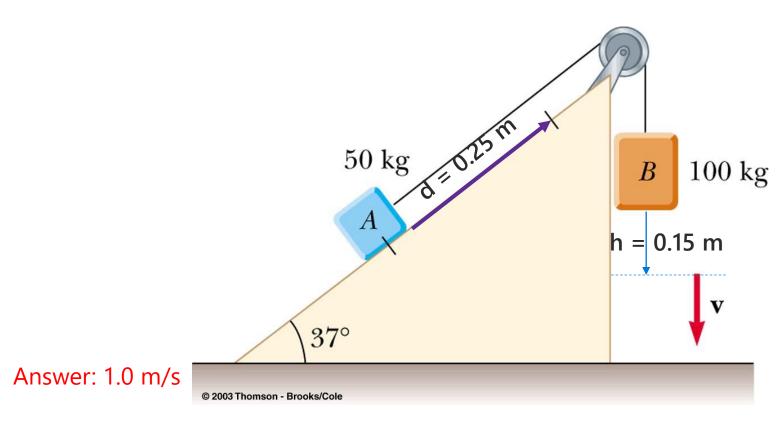
Solution

Conservation of Energy



Conservation of Energy

Two blocks, *A* and *B* ($m_A = 50 kg$ and $m_B = 100 kg$), are connected by a string as shown. If the blocks begin at rest, what will their speeds be after *A* has slid a distance *d* = 0.25 m? [Hint: Assume the pulley and incline are frictionless.]



Solution

Conservation of Energy

Given: $m_A = 50 kg$, $m_B = 100 kg$, $v_{iA} = v_{iB} = 0$, $\theta = 37^o$ and d = 0.25 m.

[Hint: Assume the pulley and incline are frictionless.]

 $(\Delta U)_A + (\Delta U)_B + (\Delta K)_A + (\Delta K)_B = 0$

 $m_A g(\Delta y)_{up} - m_B g(\Delta y)_{down} + \left(\frac{1}{2}m_A v_{fA}^2 - \frac{1}{2}m_A v_{iA}^2\right) + \left(\frac{1}{2}m_B v_{fB}^2 - \frac{1}{2}m_B v_{iB}^2\right) = 0$

$$(\Delta y)_{up} = (\Delta y)_{down} = h = d \sin \theta = (0.25) \sin 37^{\circ} = 0.15m$$

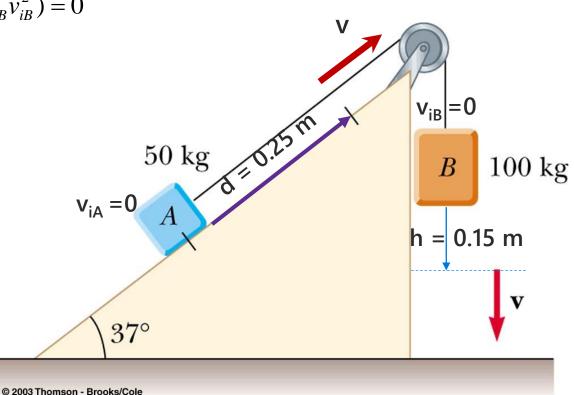
$$v_{fA} = v_{fB} = v \qquad v_{iA} = v_{iB} = 0$$

$$(m_A - m_B)gh + \frac{1}{2}(m_A + m_B)v^2 = 0$$

$$(50kg - 100kg)(9.8m/s^2)(0.15m) + \frac{1}{2}(50kg + 100kg)v^2 = 0$$

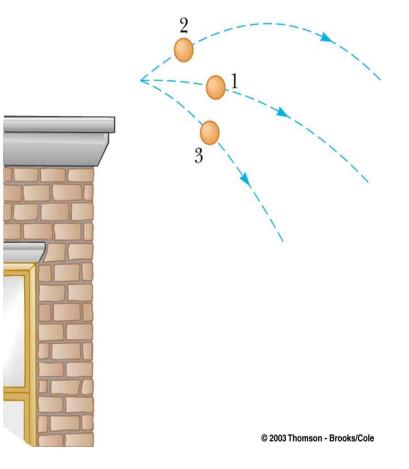
$$(50kg)(9.8m/s^2)(0.15m) = \frac{1}{2}(150kg)v^2$$

$$v_{fA} = v_{fB} = v = 1m/s$$
Answer: 1.0 m/s



- Example
- Three identical balls are thrown from the top of a building with the same initial speed. Initially, Ball 1 moves horizontally. Ball 2 moves upward.
- Ball 3 moves downward.

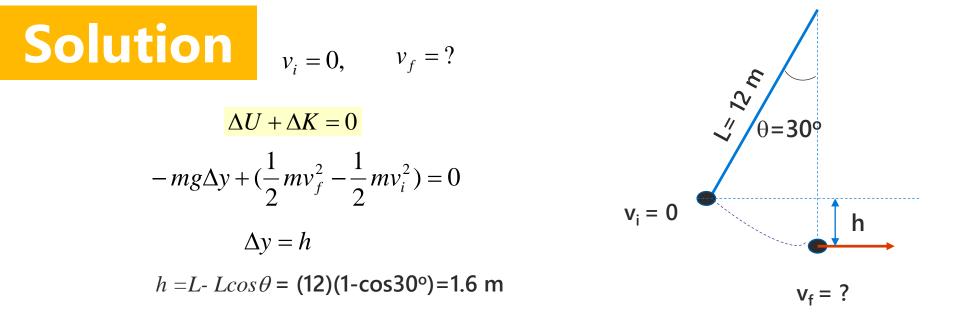
Neglecting air resistance, which ball has the fastest speed when it hits the ground?

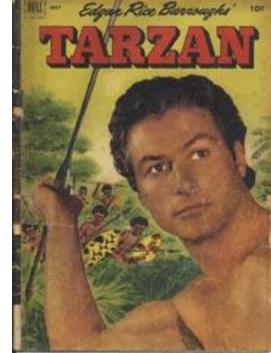


- A) Ball 1
- B) Ball 2
- C) Ball 3
- D) All have the same speed.

Conservation of Energy

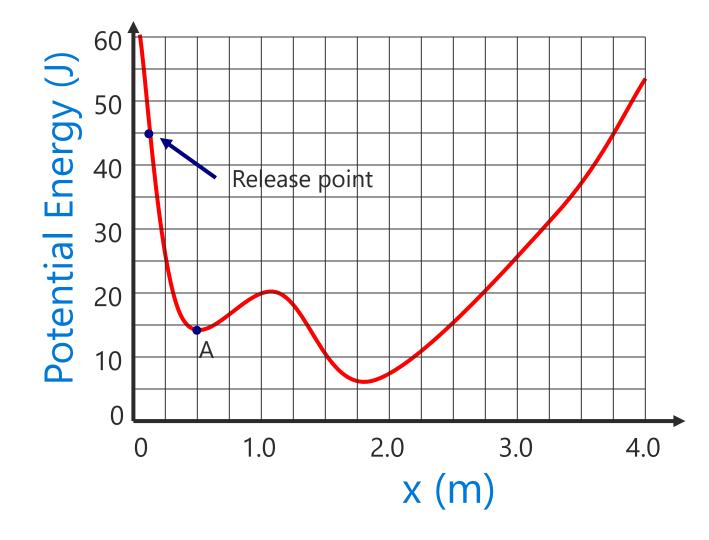
Tarzan swings from a vine whose length is 12 m. If Tarzan starts at an angle of 30 degrees with respect to the vertical and has no initial speed, what is his speed at the bottom of the arc?



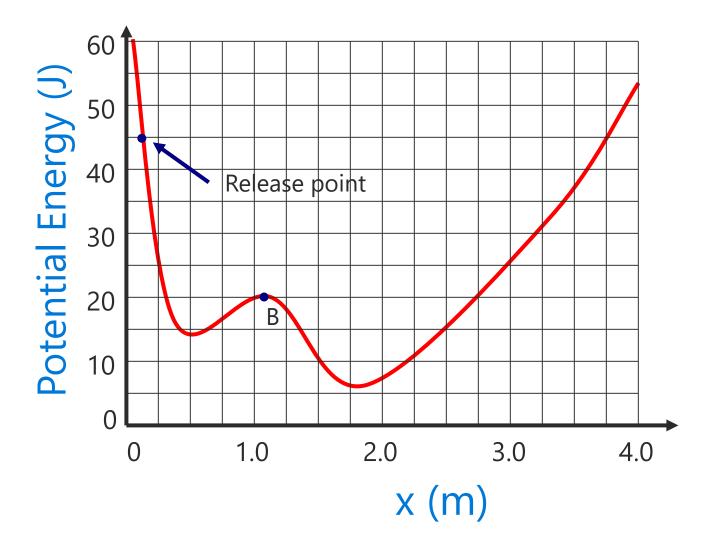


$$\Rightarrow v_f = \sqrt{2gh} = 32.15m/s$$

- At point 'A', which are zero? a) force
- b) acceleration
- c) force and accelerationd) velocity



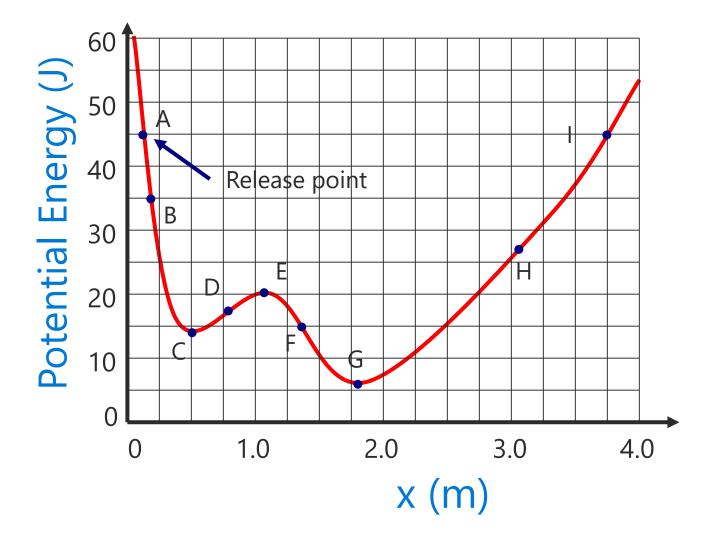
- At point 'B', which are/is zero? a) force
- b) acceleration
- c) force and acceleration
- d) velocity
- e) kinetic energy



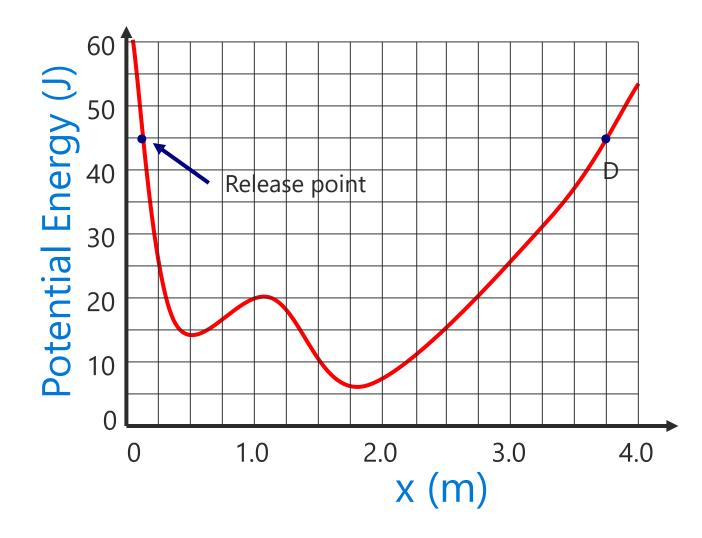
All points for which force is negative (to the left):

a) C, E and G

- b) B and F
- c) A and I
- d) D and H
- e) D, H and I

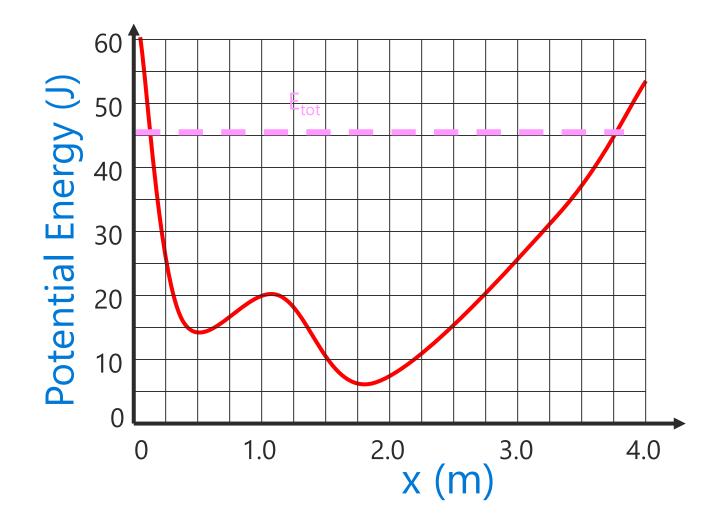


- At point 'D', which are/is zero?
- a) force
- b) acceleration
- c) force and acceleration
- d) velocity
- e) Velocity and kinetic energy



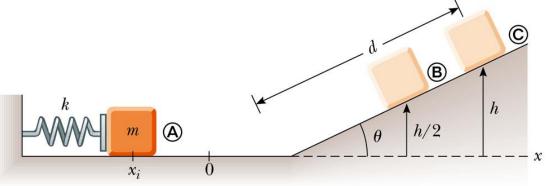
Example

A particle of mass m = 0.5kg is at a position x = 1.0 m and has a velocity of -10.0 m/s. What is the furthest points to the left and right it will reach as it oscillates back and forth?



Example

- A 0.5-kg block rests on a horizontal, frictionless surface. The block is pressed back against a spring having a constant of k = 625 N/m, compressing the spring by 10.0 cm to point A. Then the block is released.
- (a) Find the maximum distance d the block travels up the frictionless incline if $\theta = 30^{\circ}$.
- (b) How fast is the block going when halfway to its maximum height?



© 2006 Brooks/Cole - Thomson

(a) • Point A (initial state): $v_i = v_A = 0, y_A = 0, x_i = -10cm = -0.1m$

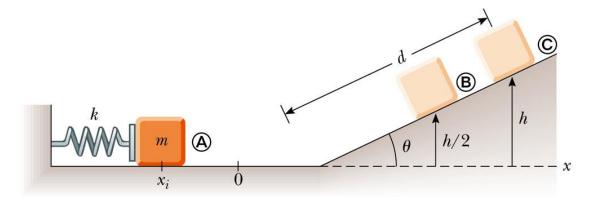
• Point C (final state): $v_c = 0, y_c - y_A = h = d \sin \theta, x_f = 0$

$$+ mgh + (\frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2}) + (\frac{1}{2}mv_{C}^{2} - \frac{1}{2}mv_{A}^{2}) = 0$$

$$\frac{1}{2}kx_i^2 = mgh = mgd\sin\theta$$
$$d = \frac{\frac{1}{2}kx_i^2}{mg\sin\theta}$$
$$= \frac{0.5(625N/m)(-0.1m)^2}{(0.5kg)(9.8m/s^2)\sin 30^\circ}$$
$$= 1.28m$$

 $(\Delta U)_{g} + (\Delta U)_{s} + (\Delta K)_{A \to C} = 0 \Longrightarrow$

Solution



© 2006 Brooks/Cole - Thomson

• Point A (initial state):
$$v_i = v_A = 0, y_A = 0, x_i = -10cm = -0.1m$$

• Point B (final state): $v_B = ?, y_B - y_A = h/2 = d \sin \theta / 2, x_f = 0$

 $\left(\Delta U\right)_{g} + \left(\Delta U\right)_{s} + \left(\Delta K\right)_{A \to B} = 0$

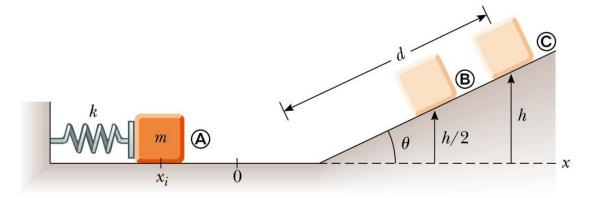
$$\Rightarrow +mg\frac{h}{2} + (\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2) + (\frac{1}{2}mv_B^2 - \frac{1}{2}mv_A^2) = 0$$

(b)

$$\frac{1}{2}kx_i^2 = \frac{1}{2}mv_B^2 + mg(\frac{h}{2})$$

Solution

 $h = d \sin \theta = (1.28m) \sin 30^\circ = 0.64m$ $\frac{k}{m}x_i^2 = v_B^2 + gh$



$$x_i^2 - gh$$

$$\therefore v_B = \sqrt{\frac{(625N/m)}{0.5kg}} (0.1m)^2 - (9.8m/s^2)(0.64m) = 2.5m/s$$

Any work done by conservative forces can be accounted for by changes in potential energy

$$W_{c} = U_{i} - U_{f} = -(U_{f} - U_{i}) = -\Delta U$$

$$W_{nc} = \Delta K + \Delta U = (K_f - K_i) + (U_f - U_i)$$

$$W_{nc} = (K_f - K_i) + (U_f - U_i)$$

□ Mechanical energy includes kinetic and potential energies

$$E = K + U = K + U_g + U_s = \frac{1}{2}mv^2 + mgy + \frac{1}{2}kx^2$$
$$W_{nc} = E_f - E_i$$

Problem Solving Strategy

Define the system to see if it includes non-conservative forces (especially friction, drag force ...)

□Without non-conservative forces

 $(\Delta U)_{g} + (\Delta U)_{s} + \Delta K = 0 \Leftrightarrow$

$$mgy_{f} - mgy_{i} + \frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2} + \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2} = 0$$

□With non-conservative forces

 $W_{nc} = (U_f - U_i) + (K_f - K_i)$

$$-fd + \sum W_{otherforces} = mgy_f - mgy_i + \frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2 + \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

□Select the location of zero potential energy

• Do not change this location while solving the problem

Identify two points the object of interest moves between

- One point should be where information is given
- The other point should be where you want to find out something

Conservation of Mechanical Energy

Solution

A block of mass m = 0.40 kg slides across a horizontal frictionless counter with a speed of v = 0.50 m/s. It runs into and compresses a spring of spring constant k = 750 N/m. When the block is momentarily stopped by the spring, by what distance d is the spring compressed?

 $(\Delta U)_{s} + (\Delta K) = 0$

or $(K_f - K_i) + (U_f - U_i) = 0$

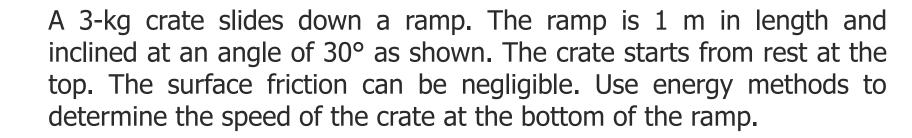
$$\Rightarrow \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2} + \frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2} = 0$$

$$x_{f} = d, \quad x_{i} = 0, \quad v_{f} = 0, \quad v_{i} = v, \quad (0 - \frac{1}{2}mv_{i}^{2}) + (\frac{1}{2}kd^{2} - 0) = 0 \quad or \quad \frac{1}{2}mv^{2} = \frac{1}{2}kd$$

$$\vec{v} = \frac{1}{2}kd$$

$$\vec{v} = \frac{1}{2}kd + \frac{1}{2}kd^{2} - \frac{1}{2}$$

Conservation of Mechanical Energy (Conservative Forces ONLY)



Solution

$$determine the speed of the constraints of the constraints$$

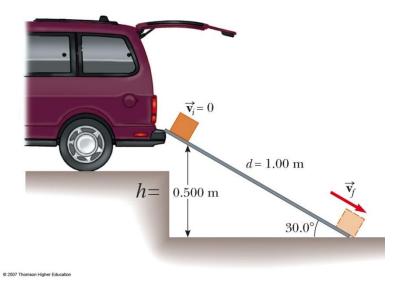
but,
$$h = \Delta y$$
, $v_i = 0$
 $\therefore mgh = \frac{1}{2}mv_f^2$

0

Problem

$$d = 1m, \quad h = d \sin 30^{\circ} = 0.5m, \ v_f = ?$$

$$v_f = \sqrt{2gh} = 3.1m/s$$



Changes in Energy for Nonconservative Forces

Problem

A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at an angle of 30° as shown. The crate starts from rest at the top. The surface in contact have a coefficient of kinetic friction of 0.15. Use energy methods to determine the speed of the crate at the bottom of the ramp.

Solution

$$-f_{k}d + \sum W_{otherforces} = \Delta U + \Delta K$$

$$-f_{k}d + \sum W_{otherforces} = -(mgy_{f} - mgy_{i}) + (\frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2})$$

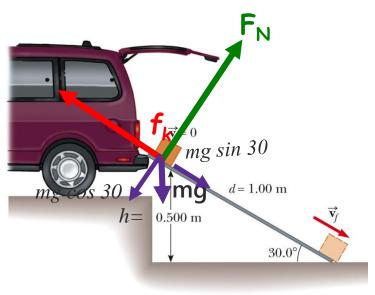
$$-\mu_{k}F_{N}d + 0 = -mgh + (\frac{1}{2}mv_{f}^{2} - 0)$$

$$\mu_{k} = 0.15 , d = 1m, \ h = d \sin 30^{\circ} = 0.5m, \ F_{N} = ?, v_{f} = ?$$

$$F_{N} - mg \cos \theta = 0 \qquad \Rightarrow F_{N} = mg \cos \theta$$

$$-\mu_{k}dmg \cos \theta = \frac{1}{2}mv_{f}^{2} - mgh$$

$$v_f = \sqrt{2g(h - \mu_k d\cos\theta)} = 2.7m/s$$



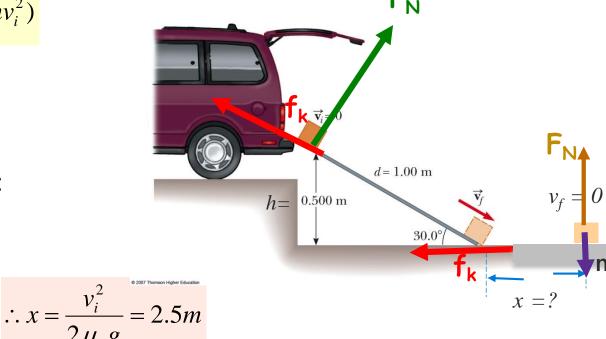
© 2007 Thomson Higher Educatio

Changes in Energy for Nonconservative Forces

A 3-kg crate slides down a ramp. The ramp is 1 m in length and inclined at Problem an angle of 30° as shown. The crate starts from rest at the top. The surface in contact have a coefficient of kinetic friction of 0.15. How far does the crate slide on the horizontal floor if it continues to experience a friction force. Solution $-f_k d + \sum W_{otherforces} = \Delta U + \Delta K$ F_N $-f_{k}d + \sum W_{otherforces} = -(mgy_{f} - mgy_{i}) + (\frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2})$ $v_i^{horizonta} = v_f^{ramp} = 2.7 m / s, \quad h' = 0$ $-\mu_k F_N x + 0 = 0 + (0 - \frac{1}{2}mv_i^2)$

On the horizontal floor, the normal force is found as:

$$F_{N} - mg = 0 \qquad \implies F_{N} = mg$$
$$\implies -\mu_{k}mgx = -\frac{1}{2}mv_{i}^{2} \qquad \mu_{k} = 0.15, v_{i} = 2.7m/s$$



Solution

Block-Spring Collision

= 0

• A block having a mass of 0.8 kg is given an initial velocity $v_A = 1.2$ m/s to the right and collides with a spring whose mass is negligible and whose force constant is k = 50 N/m as shown in figure. Assuming the surface to be frictionless, calculate the maximum compression of the spring after the collision. $(\Delta U)_s + (\Delta K) = 0$

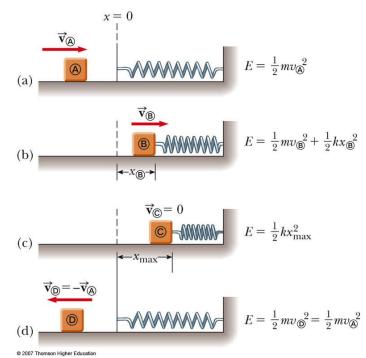
$$\frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2} + \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2}$$

$$v_{A} = v_{\max}, \quad v_{C} = 0, \quad x_{C} = x_{\max}$$

$$(\frac{1}{2}kx_{\max}^{2} - 0) + (0 - \frac{1}{2}mv_{A}^{2}) = 0$$

 $k = 50N/m, v_A = 1.2m/s, m = 0.8kg$

$$x_{\max} = \sqrt{\frac{m}{k}} v_A = \sqrt{\frac{0.8kg}{50N/m}} (1.2m/s) = 0.15m$$



Solution

Block-Spring Collision

• A block having a mass of 0.8 kg is given an initial velocity $v_A = 1.2$ m/s to the right and collides with a spring whose mass is negligible and whose force constant is k = 50 N/m as shown in figure. Suppose a constant force of kinetic friction acts between the block and the surface, with $\mu_k = 0.5$, what is the maximum compression x_c in the spring.

$$-f_{k}d + \sum W_{otherforces} = \Delta U + \Delta K$$

$$-f_{k}d + \sum W_{otherforces} = (\frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2}) + (\frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2})$$

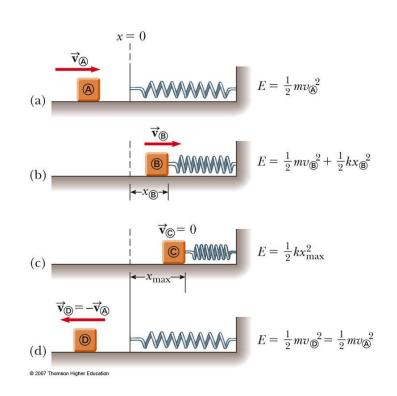
$$v_{f} = v_{c} = 0, \quad , v_{i} = v_{A}, \quad , x_{i} = 0 \text{ and } x_{f} = x_{c} = d$$

$$-\mu_{k}F_{N}d + 0 = (\frac{1}{2}kx_{c}^{2} - 0) + (0 - \frac{1}{2}mv_{A}^{2})$$

$$F_{N} = mg$$

$$\frac{1}{2}kx_{c}^{2} - \frac{1}{2}mv_{A}^{2} = -\mu_{k}mgx_{c}$$

$$25x_{c}^{2} + 3.9x_{c} - 0.58 = 0 \qquad x_{c} = 0.093m$$



problem

Connected Blocks in Motion

• Two blocks are connected by a light string that passes over a frictionless pulley. The block of mass m_1 lies on a horizontal surface and is connected to a spring of force constant k. The system is released from rest when the spring is unstretched. If the hanging block of mass m_2 falls a distance h before coming to rest, calculate the coefficient of kinetic friction between the block of mass m_1 and the surface. $-f d + \sum W = \Lambda U + \Lambda K$ $k \uparrow F_{NU}$

Solution

$$\int_{k} dt + \sum w_{otherforces} = \Delta O + \Delta R$$

$$-f_{k}d + 0 = (\Delta U)_{s} + (\Delta U)_{g_{2}} + (\Delta K)_{1} + (\Delta K)_{2}$$

$$-f_{k}d = (\frac{1}{2}kx_{f}^{2} - \frac{1}{2}kx_{i}^{2}) + (-m_{2}gh) + (\frac{1}{2}m_{1}v_{f}^{2} - \frac{1}{2}m_{1}v_{i}^{2})_{1} + (\frac{1}{2}m_{2}v_{f}^{2} - \frac{1}{2}m_{2}v_{i}^{2})_{2}$$

$$v_{i1} = v_{i2} = 0, \quad v_{f1} = v_{f2} = 0, \quad x_{i} = 0 \quad \text{and} \quad x_{f} = x$$

$$-f_{k}d = -m_{2}gh + (\frac{1}{2}kx^{2} - 0) + (0 + 0)$$

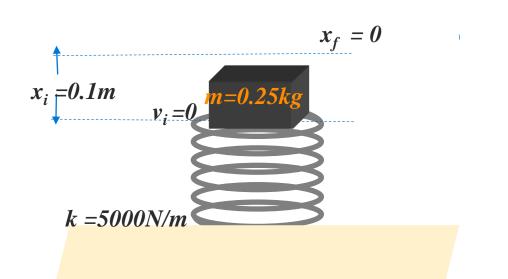
$$-\mu_{k}F_{N1}x = -m_{2}gh + \frac{1}{2}kx^{2}$$

$$F_{N1} = m_{1}g \quad \text{and} \quad x = h \quad \Rightarrow -\mu_{k}m_{1}gh = -m_{2}gh + \frac{1}{2}kh^{2} \quad \therefore \quad \mu_{k} = \frac{m_{2}g - \frac{1}{2}kh}{m_{2}g}$$

Conservation of Mechanical Energy

• A block of mass *m*= 0.25 kg is placed on top of a light vertical spring of force constant *k* = 5000 N/m and pushed downward so that the spring is compressed by 0.1 m. After the block is released, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise.

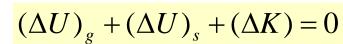
Solution

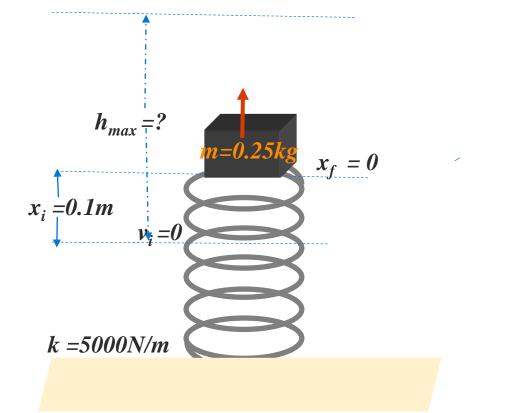


Conservation of Mechanical Energy

• A block of mass *m*= 0.25 kg is placed on top of a light vertical spring of force constant *k* = 5000 N/m and pushed downward so that the spring is compressed by 0.1 m. After the block is released, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise.

Solution





- A block of mass m = 0.25 kg is placed on top of a light vertical spring
 - of force constant k = 5000 N/m and pushed downward so that the spring is compressed by 0.1 m. After the block is released, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise.

Solution

 $m = 0.25 kg v_f = 0$ $(\Delta U)_{g} + (\Delta U)_{s} + (\Delta K) = 0$ $\Delta K = 0$ $(\Delta U)_g = mgh_{\text{max}}$ $\Delta U_s = \frac{1}{2}k(x_f^2 - x_i^2) = -\frac{1}{2}kx_i^2$ $h_{max} = ?$ $x_f = 0$ $x_i = 0.1m$ $mgh_{max} = \frac{1}{2}kx_i^2$ $(0.25kg)(9.8m/s^2)h_{\rm max} = 25J$ *k* =5000*N*/*m* $h_{\rm max} = 10.2m$

Conservation of Mechanical Energy

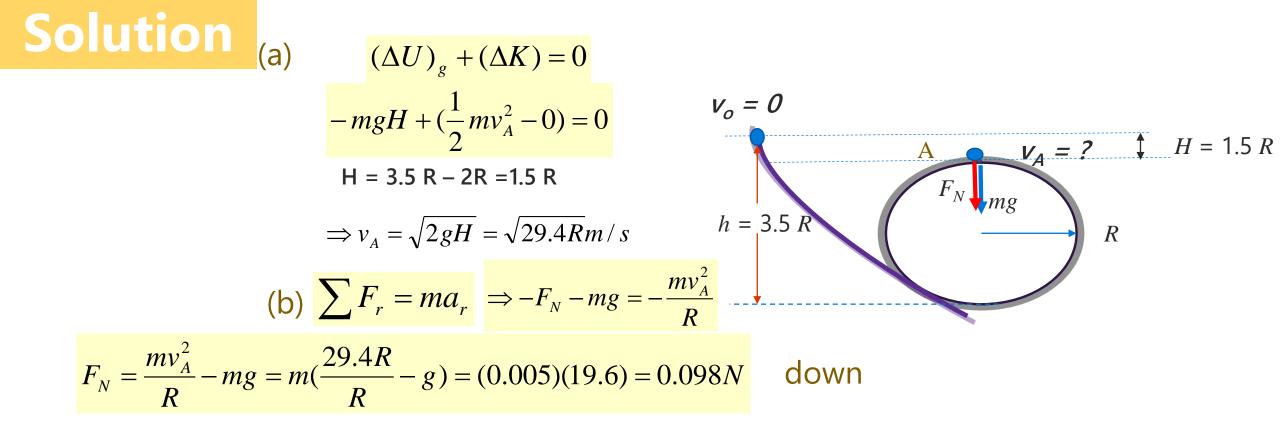
• A block of mass m= 0.25 kg is placed on top of a light vertical spring of force constant k = 5000 N/m and pushed downward so that the spring is compressed by 0.1 m. After the block is released, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise.

Solution

 $(\Delta U)_{g} + (\Delta U)_{s} + (\Delta K) = 0$ $\Delta K = 0$ $h_{max} = ?$ $(\Delta U)_g = mgh_{\text{max}}$ $\Delta U_s = \frac{1}{2}k(x_f^2 - x_i^2) = -\frac{1}{2}kx_i^2$ $x_f = 0$ $x_i = 0.1m$ =0.25k· =0 $mgh_{max} = \frac{1}{2}kx_i^2$ $(0.25kg)(9.8m/s^2)h_{\rm max} = 25J$ *k* =5000*N*/*m* $h_{\rm max} = 10.2m$

Problem

• A bead slides without friction around a loop-the-loop. The bead is released from rest at a height h = 3.5 R. (a) What is its speed at point A? (b) How large is the normal force on the bead at point A if its mass is 5 g?



Problem

• Two blocks are connected by a light string passing over a light, frictionless pulley as shown. The object of mass $m_1 = 5 \ kg$ is released from rest at a height $h = 4 \ m$ above the table. Using the isolated system model, (a) determine the speed of the object of mass $m_2 = 3 \ kg$ just as the 5 kg object hits the table and (b) find the maximum height above the table to which the 3 kg object rises.

Solution (a)
$$(\Delta U)_{g_1} + (\Delta U)_{g_2} + (\Delta K)_1 + (\Delta K)_2 = 0$$

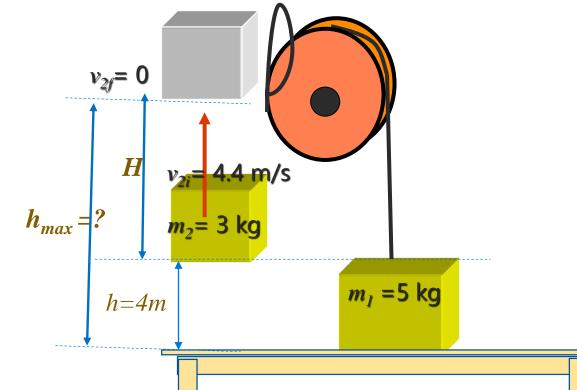
 $-m_1gh + m_2gh + (\frac{1}{2}m_1v_{1f}^2 - \frac{1}{2}m_1v_{1i}^2) + (\frac{1}{2}m_2v_{2f}^2 - \frac{1}{2}m_2v_{2i}^2) = 0$
 $v_{2f} = v_{1f} = v, v_{1i} = v_{2i} = 0$
 $(m_2 - m_1)gh + \frac{1}{2}(m_1 + m_2)v^2 = 0$
 $v = \sqrt{\frac{2gh(m_1 - m_2)}{m_1 + m_2}} \implies v = \sqrt{\frac{2(9.8)(4)(5-3)}{5+3}} = 4.4m/s$

Problem

• Two blocks are connected by a light string passing over a light, frictionless pulley as shown. The object of mass $m_1 = 5 \ kg$ is released from rest at a height $h = 4 \ m$ above the table. Using the isolated system model, (a) determine the speed of the object of mass $m_2 = 3 \ kg$ just as the $5 \ kg$ object hits the table and (b) find the maximum height above the table to which the $3 \ kg$ object rises.

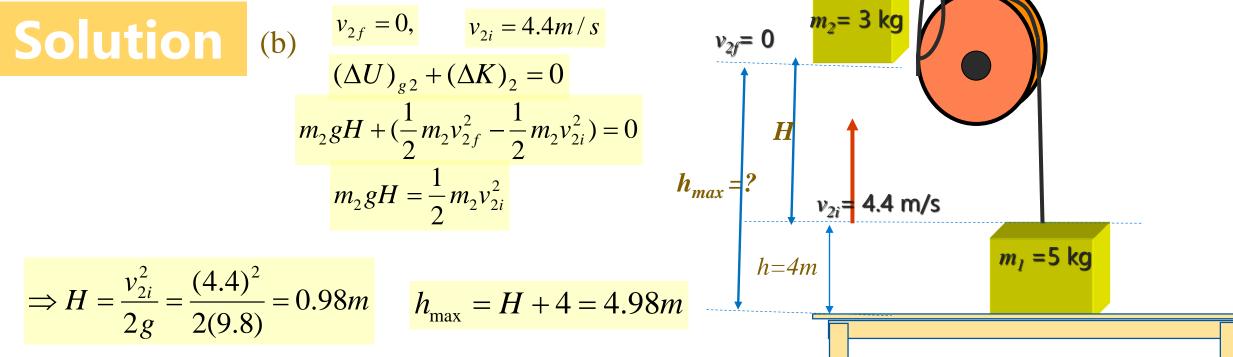
Solution (b)

$$v_{2i} = 4.4m/s,$$
 $v_{2f} = 0$
 $(\Delta U)_{2} + (\Delta K)_{2} = 0$



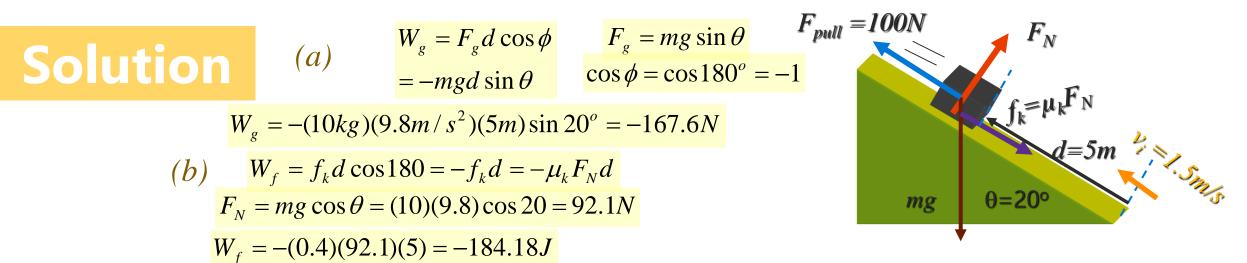
Problem

• Two blocks are connected by a light string passing over a light, frictionless pulley as shown. The object of mass $m_1 = 5 \ kg$ is released from rest at a height $h = 4 \ m$ above the table. Using the isolated system model, (a) determine the speed of the object of mass $m_2 = 3 \ kg$ just as the $5 \ kg$ object hits the table and (b) find the maximum height above the table to which the $3 \ kg$ object rises.



Problem

• A crate of mass $m = 10 \ kg$ is pulled up a rough incline with an initial speed of 1.5 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20° with the horizontal. The coefficient of kinetic friction $\mu_k = 0.4$, and the crate is pulled 5 m. (a) How muck work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate-incline system owing to friction. (c) How muck work is done by the 100-N force on the crate? (d) What is the change in the kinetic energy of the crate? What is the speed of the crate after being pulled 5 m?



Problem

• A crate of mass $m = 10 \ kg$ is pulled up a rough incline with an initial speed of 1.5 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20° with the horizontal. The coefficient of kinetic friction $\mu_k = 0.4$, and the crate is pulled 5 m. (a) How muck work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate-incline system owing to friction. (c) How muck work is done by the 100-N force on the crate? (d) What is the change in the kinetic energy of the crate?(e) What is the speed of the crate after being pulled 5 m?

So	lution	(c) $W_F = Fd \cos \varphi$ $W_F = (100)(5) \cos 0 = 500J$	$F_{pull} = 100$	
(<i>d</i>)	$W_{net} = W_g + W_F +$	$W_f = \Delta K \implies \Delta K = -167.6 + 500$	-184.18 = 148.2J	$f_k = \mu_k r^k N$ $d = 5m$
(<i>e</i>)	$\Delta K = \frac{1}{2}m(v_f^2 -$	$(v_i^2) = \frac{1}{2}(10)(v_f^2 - (1.5)^2) = 148.2J$	$\Rightarrow v_f = 5.44 m / s$	mg θ=20°

Problem

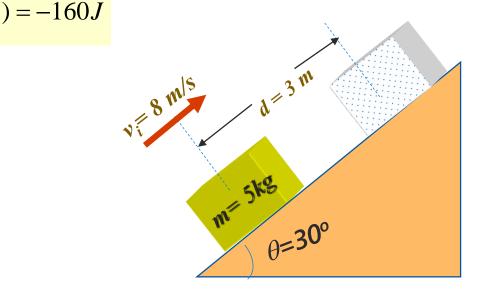
A 5 kg block is set into motion up an inclined plane with an initial speed of v_i= 8 m/s. The block comes to rest after travelling d = 3 m along the plane, which is inclined at an angle of θ = 30° to the horizontal. For this motion, determine (a) the change in the block's kinetic energy, (b) the change in the potential energy of the block-Earth system, and (c) the friction force exerted on the block (assumed to be constant). (d) What is the coefficient of kinetic friction?

Solution (a)
$$\Delta K = \frac{1}{2}m(v_f^2 - v_i^2) = \frac{1}{2}(5)(0-8)^2$$

(b) $(\Delta U)_g = m gh$

 $h = d\sin\theta = (3m)\sin 30^\circ = 1.5m$

$$(\Delta U)_g = (5kg)(9.8m/s^2)(1.5m) = 73.5J$$



Change in Mechanical Energy for Nonconservative Forces

Problem

A 5 kg block is set into motion up an inclined plane with an initial speed of v_i= 8 m/s. The block comes to rest after travelling d = 3 m along the plane, which is inclined at an angle of θ = 30° to the horizontal. For this motion, determine (a) the change in the block's kinetic energy, (b) the change in the potential energy of the block-Earth system, and (c) the friction force exerted on the block (assumed to be constant). (d) What is the coefficient of kinetic friction?

Solution
(c)
$$W_f = (\Delta U)_g + \Delta K$$

 $W_f = -f_k d$ $(\Delta U)_g = 73.5J$ $\Delta K = -160J$
 $\therefore -f_k(3m) = 73.5J - 160J$ $\Rightarrow f_k = 28.8N$
(d) $f_k = \mu_k F_N$
 $\sum F_y = F_N - mg \cos \theta = 0$ $\Rightarrow F_N = mg \cos \theta = (5kg)(9.8m/s^2)\cos 30 = 42.4N$
 $28.8N = \mu_k(42.4N)$ $\Rightarrow \mu_k = 0.67$

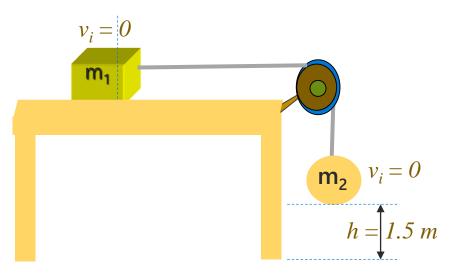
Change in Mechanical Energy for Nonconservative Forces

Problem

 The coefficient of friction between the block of mass m₁= 3 kg and the surface is µ_k = 0.4. The system starts from rest. What is the speed of the ball of mass m₂= 5 kg when it has fallen a distance h = 1.5 m?

Solution

$$W_f = (\Delta U)_{g2} + (\Delta K)_1 + (\Delta K)_2$$



Change in Mechanical Energy for Nonconservative Forces

Problem

• The coefficient of friction between the block of mass $m_1 = 3 kg$ and the surface is $\mu_k = 0.4$. The system starts from rest. What is the speed of the ball of mass $m_2 = 5 kg$ when it has fallen a distance h = 1.5 m?

Solution	$W_f = (\Delta U)_{g2} + W_f = -f_k h = -f_$	$\frac{(\Delta K)_1 + (\Delta K)_2}{-\mu_k F_{N_1} h = -\mu_k m_1 g h}$	<i>v</i> = ?	
	$(\Delta U)_{g2}$	$=-m_2gh$	$v_i = 0$ m ₁	
$(\Delta K)_1 =$	$=\frac{1}{2}m_1v^2$	$\left(\Delta K\right)_2 = \frac{1}{2}m_2v^2$	h = 1.5 m	
$-\mu_k m_1$	$-\mu_k m_1 gh = -m_2 gh + (\frac{1}{2}m_1 v_f^2) + (\frac{1}{2}m_2 v_f^2)$			$v_i = 0$ m_2 $h = 1.5 m$
$-\mu_k m_1 gh = -m$	$v_2gh + \frac{1}{2}(m_1 + m_2)v_f^2$	$\Rightarrow (m_2 - \mu_k m_1)gh = \frac{1}{2}(m_1 + m_2)gh$	$(u_2)v_f^2$	
$\Rightarrow v_f = \sqrt{\frac{2(m_f)}{(m_f)}}$	$\frac{1}{(m_1 + m_2)} \xrightarrow{m_1 + m_2} \Rightarrow$	$v_f = \sqrt{\frac{2[5 - (0.4)(3)](9.8)(1.5)}{(3+5)}} =$	= 3.7 <i>m / s</i>	<i>v</i> = ?

□Work does not depend on time interval

□The rate at which energy is transferred is important in the design and use of practical device

The time rate of energy transfer is called power

The average power is given by

$$P_{avg} = \frac{\Delta W}{\Delta t}$$

• when the method of energy transfer is work

Instantaneous Power

Power is the time rate of energy transfer. Power is valid for any means of energy transfer

Other expression

$$P_{avg} = \frac{W}{\Delta t} = \frac{F\Delta x}{\Delta t} = Fv_{avg}$$

□A more general definition of instantaneous

power

$$P = \lim_{\Delta t \to 0} \frac{W}{\Delta t} = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$$

$$P = \vec{F} \cdot \vec{v} = Fv \cos \theta$$

Units of Power

□ The SI unit of power is called the watt

• 1 watt = 1 joule / second = 1 kg \cdot m² / s³

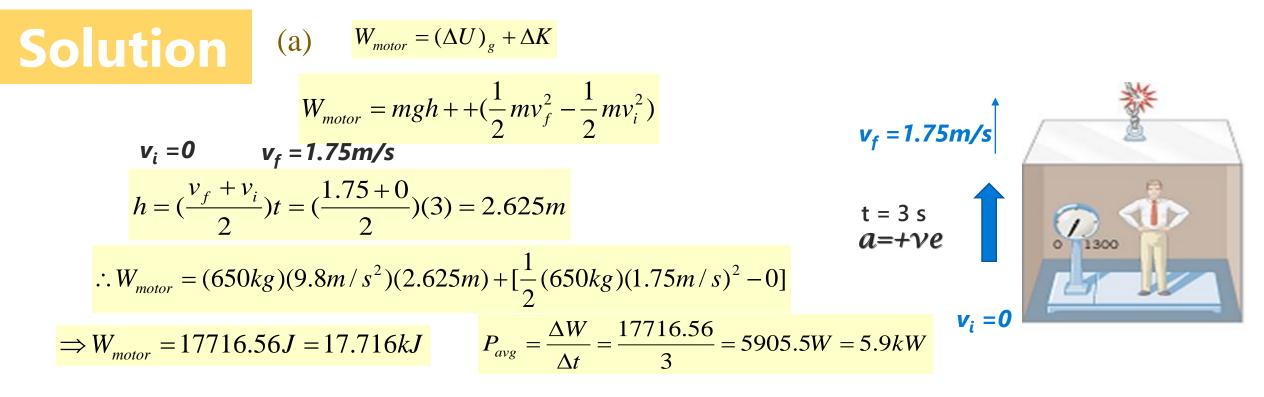
□A unit of power in the US Customary system is horsepower

Units of power can also be used to express units of work or energy

• 1 kWh = $(1000 \text{ W})(3600 \text{ s}) = 3.6 \times 10^6 \text{ J}$

Problem

• A 650-kg elevator starts from rest. It moves upward for 3 s with constant acceleration until it reaches its cruising speed of 1.75 m/s. (a) What is the average power of the elevator motor during this time interval? (b) How does this power compare with the motor power when the elevator moves at its cruising speed?



Problem

• A 650-kg elevator starts from rest. It moves upward for 3 s with constant acceleration until it reaches its cruising speed of 1.75 m/s. (a) What is the average power of the elevator motor during this time interval? (b) How does this power compare with the motor power when the elevator moves at its cruising speed?



Problem

• A 650-kg elevator starts from rest. It moves upward for 3 s with constant acceleration until it reaches its cruising speed of 1.75 m/s. (a) What is the average power of the elevator motor during this time interval? (b) How does this power compare with the motor power when the elevator moves at its cruising speed?

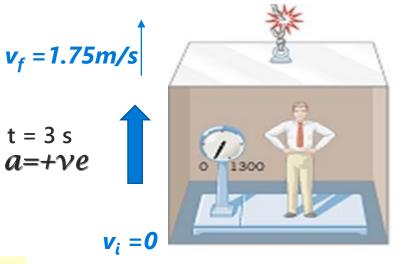
Solution (b) $P = Fv \cos \theta = Fv$

When the elevator moves with constant speed (v = 1.75 m/s), the net force acting on it must be zero

$$\sum F_{y} = F_{motor} - mg = 0 \qquad \implies F_{motor} = mg$$

$$P_{motor} = F_{motor}v = mgv$$

 $\Rightarrow P_{motor} = (650kg)(9.8m/s^2)(1.75m/s) = 11147.5W = 11.147kW$



Power Delivered by an Elevator Motor

Exercise

A 1000-kg elevator carries a maximum load of 800 kg. A constant frictional force of 4000 N retards its motion upward. What minimum power must the motor deliver to lift the fully loaded elevator at a constant speed of 3 m/s?

Solution

$$F_{net,y} = ma_y$$

$$T - f - Mg = 0$$

$$T = f + Mg = 2.16 \times 10^{4} N$$

$$P = Fv = (2.16 \times 10^{4} N)(3m/s)$$

$$= 6.48 \times 10^{4} W$$

$$P = 64.8kW = 86.9hp$$

